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SUMMARY

This paper describes three government-conducted, piloted flight simulations of
the Grumman Design 698 vertical and short takeoff and landing (V/STOL) aircraft.
Emphasis is placed on the aircraft's handling qualities as rated by various NASA,
Navy, and Grumman Aerospace Corporation pilots with flight experience ranging from
conventional takeoff and landing (CTOL) to V/STOL aircraft. Each successive simu-
lation incorporated modifications to the aircraft in order to resolve the flight
problems which were of most concern to the pilots in the previous simulation. The
objective of the first simulation was to assess the basic handling qualities of the
aircraft with the noncross-shafted propulsion system. The objective of the second
simulation was to examine the effects of incorporating the cross-shafted propulsion
system. The objective of the third simulation was to examine single-engine-
inoperative characteristics with and without cross-shafted engines.

INTRODUCTION

The purpose of the first simulation (Phase I) was to evaluate the basic
handling qualities and flight characteristics of the aircraft (using the noncross-
shafted engines) with the objective of identifying areas requiring aerodynamic,
propulsion, or flight-control improvements. The objective of the second simulation
(Phase II) was to evaluate the handling qualities of the aircraft with the modifi-
cations which were added in an attempt to resolve the flight problems which had been
of greatest concern to the pilots in the first simulation. An empirical model of
the cross-shafted propulsion system, including variable-inlet guide vane effects,
was incorporated and preliminary tests were made in preparation for the third simu-
lation. The control system for this and the previous (noncross-shafted) propulsion
configuration was refined. The objectives of the third simulation (Phase III) were
to evaluate one-engine-inoperative (OEI) characteristics for both the cross-shafted
and noncross-shafted configurations and to evaluate a series of proposed flight-
control-system configurations. Emphasis was placed on defining a satisfactory,
final, control-system configuration for a proposed demonstrator aircraft.

The Grumman Design 698 aircraft is a twin-turbofan-powered vertical short
takeoff and landing (V/STOL) aircraft, which the military could utilize as high-
altitude, vertical takeoff and landing (VTOL) radar platform (ref. 1). It also has
potential for civil applications requiring high-speed short takeoff and vertical
landing (STOVL) operations (ref. 2). The Design 698-411 is powered by two standard
General Electric TF34-GE-100 high-bypass-ratio turbofans that facilitate both
vertical flight and efficient, high-subsonic cruise at altitude. Two CTF-34 engines



(modified versions of the standard TF34-GE-100 engines) are used in the cross-
shafted version. Vertical flight is achieved by tilting the engines on an integral
structure. Attitude control in the three axes is achieved via the forces and
moments produced by the control vanes located in the fan-exhaust flow (fig. 1)
(ref. 3). The cross-shafted version uses variable-inlet guide vanes (VIGVs) which
modulate thrust by transferring shaft horsepower from one engine to the other,
thereby providing an alternate means for roll-attitude control. The mathematical
model was based on the wind tunnel tests conducted at NASA Ames Research Center
(ARC) (ref. 4) and on other tests conducted by Grumman.

Several features of this airplane are of interest to the U.S. military. The
attitude-control vanes in the fan exhaust flow resolve one of the major problems of
fixed-wing, jet-1ift, V/STOL aircraft: attitude control at speeds below the
velocity for minimum control (VMC). The control vanes are the primary stabilization
and control effectors when the airecraft is flying below 120 knots. The control
vanes can induce a thrust perpendicular to the axis of the engine with a magnitude
of up to 30% of the total thrust. This force is generated under the center of mass
of the aircraft, so that the pitch and roll attitude is controlled by a moment which
is generated by a single unopposed force. When the nacelles are near 5°, the
horizontal vanes control pitch and roll, and the vertical vane controls yaw. In the
hover mode (when the nacelles are near 90°), the horizontal vanes control pitch and
yaw and the vertical vane controls roll. One function of the control system is to
coordinate these controls as a function of nacelle angle. The geometric placement
of the vanes with respect to the center of gravity provides the proper angular
control. However, the force developed by the vane acts in a direction to provide
acceleration in the opposite direction to the acceleration provided by the angular
motion. This is an effect known as adverse-nonminimum-phase (NMP) acceleration
response. The force is in the opposite direction to the desired direction of
travel, so a "negative" acceleration is the first result of the pilot's input. This
unusual characteristic, which could produce a pilot-induced oscillation (PIO), is
much like the effect produced by the elevator on a close-coupled conventional
airplane. The advantage of these vanes is that the force is produced without having
to bleed the engines or distribute high-pressure air around the airframe, and the
thrust loss is less than 1% of the total installed thrust or 6% of the axial thrust
(fig. 2). This force-attitude control system can be used with almost any
conventional high-bypass-ratio turbofan that can be tilted and operated vertically.

SIMULATION FACILITIES

These simulations were performed on the Vertical Motion Simulator (VMS) at NASA
ARC using the Sigma 8 computer and the four-window Singer-Link Computer-Generated
Image (CGI) system (ref. 5). The VMS has six degrees of freedom, with the vertical
and lateral directions having the most translational capability; there is limited
travel in the longitudinal direction (fig. 3). The cab can be easily rotated 90° to
provide more travel in the longitudinal direction at the expense of the lateral
movement. The interchangeable cab facility makes it possible to change the entire
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cab as opposed to changing only the inside layout. This gives the researcher the
option of making major cab modifications to duplicate the cockpit of the actual
aircraft being simulated without incurring the usual facility downtime. As these
were initial simulations, the cockpit layouts were not critiqued by the pilots;
nevertheless, they are shown here for completeness (figs. 4a and U4b). The heads-up
display (HUD) was based on work done for the Navy by Systems Technology, Inc.,
during the simulations of medium-speed, "Type A" V/STOL aircraft at ARC (ref. 6).
The HUD served as a reference by which the pilot could evaluate his performance
(figs. 5a and 5b). The power-management quadrant (figs. 6a and 6b) is one type of
V/STOL console refined by simulations at ARC over the past decade (refs. 7-10).

DESCRIPTION

control syst:em.,r u51ng dlrect dlgltal de51gn with uncoupled véloclty control and
attitude: control. The classical control system provided individual control of
pitchy fdii, ‘and “yaw using-aerodynamic control surfaces, controi vanes, and direct
control:of, altltude rate/position (via thrust magnitude) and surge velocity (via
nacelde: tilt}.” “The modern control system was a direct-digital, integrated
flight/propulsion controller designed to provide the pilot wlth uncoupled fllghtpath
control and attitude control in all axes (ref. 11).

Theupowenvmanagemenh'quadrant shown in figure 6a was used in the first simu-
lation. This quandrant has three levers: one for direct control of the thrust
magnitude (the throttle power lever), another for control of the engine position
relative to the fuselage (adjusting the nacelle angle), and a third lever (the
flightpath controller/velocity command lever) to provide the pilot with discrete
control of longitudinal acceleration and vertical velocity. The throttle power
lever controlled thrust directly via the power-level angle (PLA) and the nacelle
rate-command switch on the lever commanded nacelle angle directly. The paddle
switch on this lever was used to disconnect the flightpath lever (FPL) and return
the system to direct control. The thumbwheel controlled the nacelle by commanding
acceleration and deceleration through a closed acceleration loop-feedback system.

In the the classical control system, the longitudinal stick motion provided
pitch control and the lateral stick motion provided roll control. A standard
"coolie hat" was provided to effect trim. In the modern system, the momentary on
the right top hat selected spot hover or heading command and the proportional top
hat commanded longitudinal and lateral accelerations. In both systems, the rudder
pedals provided yaw control. A detailed explanation of the classical control system
can be found in table 1. The primary response characteristices at 15 knots to
stimulus from the stick, rudder pedals, heave-rate control, and surge are shown in
appendix A.



The test matrix used in Phase I is shown in table 2. The flight experience of
the five evaluation pilots ranged from conventional takeoff and landing (CTOL) to
V/STOL aircraft (table 3). The tasks used to evaulate the aircraft included spot
turns over a VTOL landing pad and an approach to and landing on an LPH ship (fig.
7). In addition, the pilots landed on a DD-963 destroyer, but because of time
limitations, pilot ratings were not recorded for this task. The typical flightpath
from fixed-wing flight to touchdown involves mode changes and the use of different
control inputs in different regions of flight. Each region contains multiple
control modes (see table 1). The regions of flight are labeled as level flight,
glide-slope descent, and station-keeping (fig. 8).

The pilots used the Cooper-Harper Handling Qualities Rating (HQR) Scale
(fig. 9) (ref. 12) to rate the performance of the aircraft. Level I performance
(pilot ratings of 1, 2, or 3) is defined as "satifactory, requiring no improvement
and minimal pilot compensation." Level II performance (ratings of 4, 5, or 6) is
"unsatisfactory but acceptable, requiring some pilot compensation." Level III
flight performance (ratings of 7, 8, or 9) is "unacceptable, requiring significant
pilot compensation for control of the vehicle." An HQR of 10 is given if the air-
craft is uncontrollable.

Phase II

The control system used in Phase II was the classical system with single-axis
control laws. Improvements were made to the control system of the noncross-shafted
propulsion system configuration. A similar control system was designed utilizing a
cross-shafted propulsion system. For purposes of pilot training and evaluation, all
changes made to the control system could be cancelled, thus returning to the base-
line Phase I configuration. Because of the changes to the original control system,
the power-management quadrant was also modified. The nacelle-angle controller was
removed, and all necessary controls were confined to two levers and a center
controller-stick (fig. 6b). Minor improvements were made to the HUD (fig. 5b). A
detailed explanation of each control mode and its flight condition can be found in
table 4. At below 50 knots, the two control modes available are the standard mode
and the precision mode. The standard mode control is via the stick, and the
precision mode utilizes both the stick and TRC button. Up to 160 knots, flight
control options include an automatic flightpath augmentation mode and manual
throttle-and-nacelle-tilt mode. At above 160 knots, both heading and altitude holds
are available as well as manual throttle.

The test matrix used in this simulation is shown in table 5. The tasks used to
evaluate the aircraft performance included spot turns above a VIOL pad, shipboard
hover tests over a DD-963-class destroyer, up-and-away flight to station-keeping and
partial conversion to landing on an LPH ship, and outbound conversion after vertical
lift-off from an LPH. A list of the pilots and a brief description of their past
experiences are given in table 3.




Most of the testing was done with the VMS cab rotated 90° for greater motion in
the longitudinal direction because the greatest portion of the flight regime
included acceleration in both the longitudinal and vertical directions. The VMS is
capable of handling the responses (such as the lateral adverse NMP characteristic)
even with the cab rotated for maximum longitudinal travel; the lateral acceleration
is significant only in hover.

Some unsatisfactory aircraft chracteristics observed in Phase I were an
adverse-NMP linear-acceleration response in both the longitudinal and lateral axes,
a large thrust-response lag at low power settings, and adverse ground effects. The
primary modifications included the use of the vertical-vane deflection as a thrust
spoiling method, the addition of the cross-shafted propulsion system model, and the
implementation of two velocity- and attitude-control modes (standard and precision)
for speeds below 50 knots (13).

The cross-shafted engine included VIGVs, which produced differential thrust
with a conservative time constant of 0.2 sec. In the Navy Type A V/STOL simulation
investigation at ARC, a VIGV time constant of 0.05 sec was used (14). As a compar-
ison exercise, the time constant of the TF-34 VIGVs was changed to 0.05, which
considerably improved the thrust response. In Phase III, the time constant was kept
at 0.05 sec for the entire simulation.

The vertical vanes were used as speed brakes (thrust spoilers); they were
manually commanded by the pilot before nacelle unlock. The splayed vertical vanes
then automatically augmented flightpath control by keeping the throttle or the PLA
high, thus reducing the engine-response lag.

In the standard mode, horizontal and vertical vane deflections were used to
control roll and pitch. This mode functioned essentially as surge and sway control
for the classical system in Phase I. Longitudinal acceleration control was provided
through pitch-attitude command on the stick, by manual nacelle tilt in the manual
throttle mode, or by using the thumbwheel in the flightpath augmentation mode.
Lateral acceleration control was provided through bank-attitude command with the
stick. Height was controlled by using either the manual throttle or the vertical
velocity control (VVC) button with the heave mode engaged.

The precision mode was available only when the flightpath augmentation mode was
also engaged. Surge- and sway-control was provided through the translational rate
command (TRC) button which was independent of pitch- and roll-attitude control, or
through the stick with minimal pitch- and roll-attitude control (fig. 6b). Longitu-
dinal acceleration was controlled with the thumbwheel; longitudinal velocity was
controlled with either the stick or TRC button. The lateral TRC button or the
lateral stick was used to control sway. In the precision mode, a combination of
nacelle tilt and horizontal vane deflection was used for pitch and surge control.
Vertical-vane deflection and differential thrust were used for roll- and
sway-control.



Phase III

In order to correct some undesirable flight characteristics identified in
Phase II and to more thoroughly examine both the cross-shafted and noncross-shafted
configurations, several modifications were made to the mathematical model in the
third simulation. A third vertical vane was added to the noncross-shafted configu-
ration to generate larger control moments. The three-vane configuration also
permitted vane overtravel (up to 70°) for the investigation of roll-control capa-
bilities following noncross-shafted engine failure. Six roll-control modes were
made available in hover and low-speed flight conditions in order to define the most
desirable control configuration. The PLA limit schedule was modified to give the
pilot the ability to stay within a more realistic transition corridor. The strake
angle was allowed to vary in order to isolate the impact of ground effects on the
aircraft handling qualities during landing. Flightpath command gains were modified
to provide improved flightpath control. Finally, the rates and scheduling of the
speedbrakes were modified to reduce pitch and height transients which accompanied a
configuration change (15).

Simulation-engine-failure- and pilot-ejection capabilities were added to the
model in order to investigate the aircraft's OEI characteristics and the pilot's
ejection response. Cross-shafted, single-engine failures were modeled so that the
core thrust of the failed engine reduced to zero in approximately 1.0 sec, and the
total fan torque available became one-half of its prior value divided between the
two fans. Noncross-shafted, single-engine failures were modeled so that all of the
propulsive thrust of the failed engine dropped to zero in 1.0 sec. In addition, all
accompanying propulsion-induced aerodynamics were modeled.

In the event of an engine failure of either the cross-shafted or noncross-
shafted configuration, engine speed brakes were automatically retracted. For
noncross-shafted engine failures, the three vertical vanes on the operative engine
were automatically programmed to their maximum overtravel positions to counter the
rolling moment caused by the loss of thrust of the failed engine. Engine failure
logic for the cross-shafted configuration assumed that an engine failure could be
detected within 3 sec. For the noncross-shafted configuration, a rapid drop of core
RPM exceeding 50% of its starting value triggered the related engine-failure logic
to adjust the vertical vanes.

In addition to the motion of the aireraft and visual cues provided by the CGI
system, the pilot was provided with an engine failure warning on the HUD. The pilot
was instructed to eject by using an ejection ring placed on the seat between his
legs if he felt the aircraft could not be safely controlled. Initiation of ejection

stopped the aircraft motion and allowed the critical ejection parameters to be
recorded.

The control modes used were essentially the same as in Phase II. There were,
however, six hover-control modes available (table 6). Modes 1 (cross-shafted con-
figuration) and 2 (noncross-shafted configuration) were the standard modes which
used only the vertical vanes to control roll attitude. These modes exhibited the
maximum adverse-NMP acceleration behavior. Mode 1P (P for precision) used vertical




vanes and VIGVs for roll-attitude control and mode 2P used vertical vanes and dif-
ferential engine RPM for roll-attitude control. Both modes reduced the adverse NMP-
acceleration behavior and provided lateral gust rejection. The TRC button was
available for both modes 1P and 2P. In mode 3 (the cross-shafted configuration),
the VIGVs alone controlled roll attitude. There was no adverse NMP-acceleration
response. Mode 4 (also with cross-shafting) controlled the roll rate using the
VIGVs and also exhibited zero adverse NMP-acceleration. Mode 2P had slower response
characteristics than the other modes. The dynamic response characteristics of the
longitudinal stick, top hat, and surge wheel with no wind is shown in Appendix B.
Also shown are the lateral stick and top hat dynamic-response characteristics for
the various control modes in no-wind conditions.

The HUD and the power-management quadrant were satisfactory in Phase II. The
speed brake arm button on the second lever became the nacelle arm in Phase III, and
the low airspeed and vector display on the HUD were modified for clarity (figs. 5b
and 6b).

The test matrix, shown in table 7, was constructed to investigate the OEI
characteristics throughout the flight envelope and to evaluate the lateral control
modes of hover and low-speed flight. Four tasks were flown with varied combinations
of control modes and environmental conditions. The tasks included a complete
inbound transition to station keeping on the port side of an LPH, an approach to and
landing on an LPH, an approach to and landing on a DD-963 destroyer, and spot turns
over a VIOL pad. Figure 8 illustrates the inbound transition profile. The evalu-
ation pilots (table 3) were informed that engine failure could occur at any time
during any task. If a failure occurred, they were to attempt to recover the air-
craft by converting to a clean configuration (landing gear up, nacelles completely
down, and speed brakes stowed). If a pilot felt recovery was not possible, he was
to eject.

DISCUSSION OF RESULTS
Phase I

Pilot ratings for the inbound transition and landing on an LPH are shown in
table 8 and the ratings for the hover tasks over the VIOL pad are shown in
table 9. Pilots rated most of the hover tasks as "adequate," but the spot turns
were rated "inadequate" with HQRs as high as 10 ("controllable") in a 25-knot
wind. Pilot work load is especially high for the spot turns because the pilot must
control the nacelle and throttle position with his left hand while coordinating
piteh and roll attitude with his right. Pilots recommended better visual cues on
the CGI pad to improve their ability to sease motion in the VMS.

Pilots rated the inbound transition to landing on the deck of an LPH as "essen-
tially adequate with room for improvement." The pilots had the most difficulty
descending toward and touching down on the deck, with HQRs ranging from 2 to 8



depending on the control system used and the velocity of the wind over the deck
(WOD) .

The pilots were asked to achieve a sink rate of 300 ft/min out-of-ground-effect
(OGE) and allow the aircraft to settle to the deck. Figure 10 shows the trim
requirements as a function of height and nacelle diameter. This high level of sink
rate was rarely achieved at touchdown primarily because of the cushioning charac-
teristics of the lift in-ground-effect caused by the fountain which is formed when
the two engine exhaust streams merge beneath the fuselage. Reduction of this
lifting force could not be successfully countered by reducing engine power either
manually through the PLA or automatically in the heave control mode. The lifting
force produced a fountain that caused the aircraft to float. In addition, a nose-up
pitching moment occurred when the horizontal vanes tried to counteract the attitude
change from the fountain effect. The adverse-NMP acceleration caused the vane
deflection to product a rearward motion. The pilots had some difficulty landing on
either the LPH or the DD-963 because of the strong ground effects of the aircraft.
The tendency of the aircraft to float on the cushion of air caused the aircraft to
remain in ground effect (IGE) longer, producing the rearward drift identified by the
pilots. When the nacelle angle was controlled, either manually or via the surge
mode, this drift was countered. However, the precision of the landing could not be
controlled to desired accuracy without undue pilot compensation during a normal
workload period. The landing distributions are shown in figure 11.

Various control-system characteristics were identified by the pilots as needing
improvement. The high-speed aerodynamic spoilers provided sufficient roll, but
produced excessive yaw. More precise location of the spoilers in the successive
simulations would increase the roll effectiveness by 50% and reduce the "proverse"
yaw effectiveness by 40%, providing satisfactory roll performance. This would also
improve the spoiler/rudder relationship.

Thrust levels and response characteristics are key factors in the ability of
pilots to control the aircraft. The level and response time of the thrust determine
the ability to spool down, the ability to spool up, the effect of the gyroscopic
moments, the sensitivity of glide-slope control, the amount of ground-effect
control, and the sensitivity of the throttle control. Thrust levels are low for
most phases of flight other than hover and engine response is slower at low thrust
levels (figs. 12 and 13). The thrust behavior could be improved by modulating the
trim thrust, predicated on the profile to be flown. The trim thrust could be
modulated by using the vertical vanes as speed brakes. This would also desensitize
the thrust/nacelle relationship, allowing the pilot to reduce his work load.

The pilots felt that the initial deceleration and acceleration capability via
the surge mode (which depends on nacelle tilt) was too low. The capability was then
increased from 0.15 to 0.30 g. Although this helped the pilots to decelerate
quickly on the glide slope and to make rapid and precise velocity corrections near
the ship, the subsequent trim thrust was lowered, thereby reducing the engine-
response characteristic. To maintain altitude and stay within the prescribed glide
slope, the pilots had to increase power when decelerating. A need was identified
for a nacelle-control scheme, which would provide the pilot with proper thrust




behavior while staying within the physical constraints of the aircraft. Implemen-
tation of scheduled rate limits and anticipatory cues to the thrust command would
probably improve nacelle behavior,

The adverse NMP-acceleration response was noticed by the pilots when executing
tight position control of the vehicle while landing or making spot turns. The pilot
would bank the aircraft to create a lateral translation, but before the translation
was effected by the bank angle, the aircraft accelerated in the opposite direction
because of the horizontal force from the vane deflection. The correct translation
then occurred as the thrust vector from the bank angle took over. The level of
acceleration during the translation was also reduced because of the side force of
the vertical vane. To compensate, the pilot would adjust the lateral stick,
resulting in PIO. This inherent vehicle characteristic was worsened by the design
of the classical control system, which was purposefully designed to be simplistic in
nature without correcting for this previously known behavior. In addition, no
command filter was tried in Phase I. The NMP acceleration response can be mini-
mized, however, by integrating all control effectors. The use of differential
thrust to provide the pure rolling moment in conjunction with the correct vertical
vane motion will alleviate the lateral-axis, NMP difficulties, and the integration
of the nacelle deflection with the deflection of the horizontal vanes will alleviate
the longitudinal-axis NMP difficulties.

PIO occurred out of ground effect (OGE) in the lateral axis, becoming more
pronounced when IGE. The PIO can be attributed to a combination of a large time
delay in the aircraft's response and to unstable ground-effects. Height control was
difficult because of a strong positive 1ift created by the fountain formed when the
two exhaust streams merged beneath the fuselage (ref. 16). Longitudinal position
could not be held during hover because of the risk of a nose-up pitching-moment
IGE. Pilot-generated, nose-down inputs induced a negative X-force on the vertical
vanes, resulting in a rearward aircraft acceleration which compounded the effect.

Phase 11

The use of the flightpath augmentor was generally preferred over the manual
throttle and nacelle tilt. However, during the inbound transition, the engine-
inlet-separation boundary stop was often reached (the scheduled PLA minimum) whether
the manual throttle or the flightpath augmentor was used. A computer-controlled
stop was implemented to ensure that the pilot never reached the engine-inlet-stall
conditions. Each pilot had a preferred method of decelerating; all of the pilots
rated the handling qualities at Level II ("unsatisfactory but acceptable, requiring
some pilot compensation") when using the manual throttle and at Level I ("satis-
factory") with the flightpath augmentor engaged (fig. 14). The VVC improved
handling qualities by reducing PI0 during low-speed and hover operations. Only
during the outbound transition was the manual throttle preferred (fig. 15). The
aircraft was unable to effectively hold altitude when the VVC was used during the
conversion from hover to forward flight unless the pilot adjusted the flightpath
lever.



The precision mode of velocity and attitude control eliminated the adverse NMP
response at the aircraft's c.g. by using a combination of automatic nacelle tilt
longitudinally and differential engine thrust laterally. In the standard mode,
however, only the longitudinal adverse-NMP response was eliminated (using the surge-
command system); the lateral adverse-NMP response remained a problem. As the thumb-
wheel controlled surge and the lateral stick controlled sway, an additional problem
arose with a separation of lateral and longitudinal control.

Although the precision mode eliminated the adverse NMP response, a large time
delay (0.1 - 0.2 sec) in the translational response remained. The capabilities of
the precision mode were not fully realized, for the pilots tended to automatically
use the center stick instead of the TRC button. As a result, improvements in the
pilots ratings for the precision mode over the standard mode were not significant.

For the shipboard landing task, each pilot's experience and the technique that
was used determined the HQRs given. Pilots with V/STOL experience flew with greater
precision (a higher "gain") than CTOL pilots and thereby encountered deficiencies
that the CTOL pilots did not encounter. Level II ratings were then given, even with
the precision mode engaged (figs. 16-19).

Figure 16 shows the range of HQRs given by each of the pilots who attempted an
inbound transition to landing on an LPH. The ratings of 10 were given given by the
pilots with V/STOL experience, whereas the ratings below 3 were given by the pilots
with CTOL experience. An average of the ratings is shown in figure 17. The indi-
vidual ratings of each pilot who attempted an inbound transition to landing on a
DD-963 destroyer are shown in figure 18, and the averaged values are shown in
figure 19. Pilot ratings were essentially equal (a difference of one-half an HQR)
for the cross-shafted and noncross-shafted systems. This was the expected result,
for the difference in thrust-response time-constants was minimal.

Figure 20 presents the touchdown dispersion results on the LPH deck for each
pilot using each control system mode, The pilots were asked to select a touchdown
position using any information they perceived and could duplicate based on the CGI
visuals. The pilots used the deck markings and the ship's elevator as reference
points. Neither an increase in the velocity of the WOD nor an increase in turbu-
lence affected the pilots' performance. A comparison of the touchdown accuracies
for each control made coincides with the pilots' ratings for landing on the LPH
(fig. 17). The pilots' performances improved with the use of the precision control
mode, and remained essentially the same for the cross-shafted and noncross-shafted
engine configurations.

The touchdown dispersions for landings on the DD-963 destroyer are shown in
figure 21. The pilots used the hangar door and the touchdown markings for visual
references. The landing positions were skewed down and to the right along the
approach path due to the tendency of pilots to pull away from the hangar door.
Also, the pilots centered the aircraft on the pad based on their position, whereas
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the aircraft's c.g. (the data reference point) is approximately 12 ft aft of the
pilot. As shown in the pilots' ratings (fig. 19), the performance for each control
mode is essentially equal.

As expected, use of the vertical vanes as speed brakes improved both the accel-
eration and deceleration as well as the flightpath-control characteristies of the
aircraft. However, pitch and height-coupling transients occurred when the vanes
automatically changed position. By increasing the splaying time-constant on the
vertical vanes, the transients were partially eliminated.

For spot turns over the VTOL pad, flightpath augmentation was preferred over
manual throttle, and the precision mode was preferred over the standard mode. The
pilots were not able to maintain pesition in 25 knot crosswinds; futhermore, only by
using full lateral stick could they maintain position in 15-knot crosswinds
(fig. 22).

Phase II1

The simulated aircraft exhibited no better than Level 2 handling qualities
while using any of the control modes. This may have been caused partially by
simulator fidelity limitations caused by computational delays, lack of real-world
visual cues in the simulated image, and unrealistic motion cues (ref. 17). There
was an improvement from Level 3 to Level 2 handling qualities when control modes 1P,
2P, and 3 (with reduced or eliminated adverse-NMP acceleration responses) were used
rather than modes 1 and 2 (fig. 23).

Touchdown dispersion results for landings on an LPH ship using control modes 1,
1P, 2, and 2P are shown in figures 24a-d. The pilots were asked to land at their
own preferred position on deck using whatever visual cues were available. A scaled
figure of a man was placed on deck for some of the earlier runs, and later, more
deck markings were added. No combination of extra visual cues seemed to make a
difference in the accuracy of the touchdowns, however.

The pilots landed using only the stick using the top hat, and using their own
"best way." Since each pilot had his own preferred landing position, the touchdown
data points are grouped in clusters.

The use of attitude command (mode 3) over rate command (mode 4) yielded an
improvement of approximately one-half an HQR during the day and one HQR at night
(fig. 25). Using modes 3 and 4, pilots landed on the LPH in day and night
conditions. The touchdown dispersion results are shown in figures 26a-d.

No significant difference in handling qualities between mode 1P (which has an
attitude command/translational-rate-command combination) and 3 (pure attitude com-
mand) was observed in either sea state 3 or sea state 5 (fig. 27). In addition, a
degradation of approximately 1 HQR occurred when operating in high sea states rather
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than in moderate sea states using either control mode. Landing distributions on a
DD-963 are shown in figures 28a-d. The pilots tended to pull away from the hangar
door, skewing the results down and to the right.

In the spot-turn task, desired and adequate performance was defined as keeping
the entire aircraft (with a wing span of 40 ft) within an 80-ft or a 120-ft diameter
circle. In 15-knot winds, desired performance was achieved with surge on and
adequate performance was achieved with surge off (fig. 29). In 25-knot winds,
adequate performance was achieved with surge on and unsatisfactory performance was
achieved with surge off.

Varying the strake angle provided inconclusive results. However, the ground
effects seemed to affect the pilots far less than in the previous simulations. This
is probably traceable to pilot technique, as the pilots tended to increase their
sink rate and spend less time IGE.

The minimum recovery speed for this aircraft (the lowest airspeed at which a
single engine failure can occur and consistent recoveries are possible) is approxi-
mately 60 knots with cross-shafted engines (fig. 30). Below that speed, the pilot
must eject. For the noncross-shafted configuration, the minimum recovery speed is
approximately twice that (117 knots) (fig. 31).

Within the recoverable region, altitude loss following a single engine failure
with cross-shafted engines remained consistently below the Grumman prediction which
ranged from 600 ft at 60 knots to 100 ft at 160 knots (fig. 32). For the noncross-
shafted engine configuration, the altitude loss ranged from 2400 ft at 120 knots to
340 £t at 200 knots (fig. 33).

Following a single-engine failure below the minimum recovery speed, the mean
time from failure to ejection initiation was 2.1 sec with cross-shafted engines
(fig. 34) and 1.8 sec with noncross-shafted engines (fig. 35). All ejections made
following a single-engine failure with cross shafted engines during a nominal
inbound transition were performed safely. A safe ejection is defined as an ejection
within the safety envelope of the MK.10 ejection seat, which is a typical contem-
porary ejection seat. Approximately two-thirds of the ejections made following a
single-engine failure, with noncross-shafted engines, during a nominal inbound
transition were performed within the bank angle, altitude, and sink-rate safety
limits.

Following a single-engine failure within recovery limits, recovery was accom-

plished by converting to a clean configuration. No attempt was made to stabilize at
a partially converted configuration.
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CONCLUSIONS

Three government-conducted simulations of the Grumman design 698 V/STOL air-
craft have been successfully completed. The classical control system was adequate
for the tasks attempted, such as landing on a DD-963 destroyer in a moderate-sea
state and on an LPH in heavy seas. Although the simulation pilots had diverse
backgrounds, all of them mastered the aircraft with the classical control system.
The pilots who had no VTOL experience exhibited a steep learning curve. One impor-
tant addition was the use of engine tilt with pitch command to reduce the adverse-
NMP characteristics and to increase the knots per degree of stick input. A second
improvement was the addition of VIGVs and cross-shafted engines for OEI operation.
This also provided the means for using differential engine thrust for roll control
and direct side force for lateral translation.

Based on HQRs, touchdown performance measurements and pilots' comments, a
precision mode of flight control architecture would be required on a demonstrator or
a production Design 698 configuration. The definition of response type alone,
however, would not ensure satisfactory handling qualities. In hover and in low-
speed flight, the pilot is primarily concerned with control of relative linear
acceleration, velocity, and position. This concern places requirements on both
transient and steady-state translational response. As a result, the elimination of
the aircraft's characteristic adverse-NMP linear response would be required with any
flight control architecture. In addition, selection of either a satisfactory
steady-state linear acceleration response or velocity response with an attitude
command architecture would be required.

Based primarily on performance results, a surge system is required for hover
and low-speed operations. This system, however, does not deliver desired perfor-
mance in moderate to high winds mainly because of the limit on side-force generation
through roll-attitude and vertical vane deflection; a significant degradation in
shipboard launch and recovery ability in moderate to high crosswinds may result.

Based on minimum recovery speed, altitude loss, and ejection capability
following a single engine failure, any two-engine configuration should incorporate
cross-shafting.

During any designated power approach scenario, the pilot should attempt to
maximize flight time above the minimum recovery speed and above an altitude greater
than the maximum corresponding altitude loss, thus minimizing flight time below
these speed and altitude limits.
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APPENDIX A

PRIMARY RESPONSE CHARACTERISTICS

The figures in appendix A illustrate the primary response characteristics at 15
KEAS to stimulus from the stick, rudder pedals, heave rate control,and surge. These
responses were generated on the GAC 6DOF computer program and were used to verify
the NASA Ames model.

ALFA angle of attack, deg

AXPIL acceleration at the pilot station, x direction, g
AYPIL acceleration at pilot station, y direction, g
AZPIL acceleration at the pilot station, z direction, g
BETA sideslip angle, deg

DEL ALT incremental altitude change, ft

DELFWD incremental forward position of the aircraft, ft
GTH LT gross thrust, left engine, 1b/100

HDOT rate of change of altitude, ft/s

LT VANEH left horizontal vane deflection, deg

NACEL LT left nacelle deflection, deg

P body angular velocity, deg/s

PHI Euler bank angle of the aircraft, deg

PSI Euler heading angle, deg

QDQOT Pitch rate acceleration in body axis, deg/s2
RR Yaw rate at body axis, ft/s

RRDOT Yaw axis acceleration, ft/s2

THET piteh attitude, deg
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TLEVX/PL

VEQUI

power level angle, deg

equivalent airspeed, knots
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APPENDIX B

FUNDAMENTAL TIME HISTORIES

The figures in Appendix B demonstrate fundamental time histories of the air-
craft in Phase III for various hover control configurations for 1.0 in. of input
These figures were generated by the Grumman 6DOF digital program and
have been compared with the NASA Ames VMS responses.

deflection.

ANACT
DIF TRST
DIF VANE
GVANEL
VXI

VY1

YAl

nacelle deflection; deg

differential thrust between the
differential thrust between the
left guide vane deflection, deg
velocity of the aircraft in the
velocity of the aircraft in the

position change of the aircraft
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left and right engines, 1b/100

left and right horizontal vanes, deg

inertial axis, x direction, ft/s
inertial axis, y direction, ft/s

in the inertial axis
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Figure B4.- 698 Lateral dynamic response. Final response characteristics--
Phase III: 1 in.-step lateral-stick input from trim hover in no-wind conditions
with flightpath augmentation on.
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Figure B7.- 698 Lateral dynamic response. Final response characteristics--
Phase III: 1 in.-step lateral-stick input from trim hover in no wind with
flightpath augmentation on.
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Figure B8.- 698 Lateral dynamic response. Final response characteristics--
Phase III: Full lateral tophat input from trim hover in no-wind with flightpath
augmentation on.
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Figure B10.- 698 Lateral dynamic response. Final response characteristies--
Phase III: 1 in.-step lateral-stick input from trim hover in no-wind with
flightpath augmentation on.
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TABLE 1.~ CLASSICAL CONTROL SYSTEM--PHASE I

CRUISE

BASIC UNAGUMENTED, STABLE AIRCRAFT
SAS? SELECTION PROVIDES
RATE DAMPING IN PITCH
RATE COMMAND/ATTITUDE HOLD IN ROLL
TURN COORDINATION IN YAW
PILOT RELIEF MODES
ALTITUDE HOLD
HEADING HOLD

CONVERSION

ATTITUDE COMMAND/ATTITUDE HOLD — PITCH
RATE COMMAND/ATTITUDE HOLD — ROLL
TURN COORDINATION IN YAW

TRANSITION .

ATTITUDE COMMAND/ATTITUDE HOLD - PITCH

RATE COMMAND/ATTITUDE HOLD BECOMES ATTITUDE
COMMAND/ATTITUDE HOLD AT 40 knot — ROLL

TURN COORDINATION BECOMES RATE COMMAND/ATTITUDE
HOLD AT 60 knot — YAW

MANUAL OPERATION OF THROTTLE/NACELLE ON THRUST
LEVER

FLIGHTPATH CONTROL (h, %) AVAILABLE ON SEPARATE
VELOCITY LEVER

ALTITUDE HOLD AVAILABLE WHILE ON APPROACH TO
LANDING SITE

HOVER AND LANDING
MAY BE ATTEMPTED WITH ABOVE SYSTEM

3SAS: STABILITY-AUGMENTATION SYSTEM.
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TABLE 4.- CLASSICAL CONTROL SYSTEM--PHASE II

e ABOVE 160 knots (PRIOR TO NACELLE UNLOCK)

LONGITUDINAL:
LATERAL/DIRECTIONAL:

VERTICAL:

PITCH RC

ROLL RC/AH
TURN COORDINATION
HEADING HOLD AVAILABLE

MANUAL THROTTLE
ALTITUDE HOLD AVAILABLE

& BETWEEN 160 knots AND 50 knots (CONVERSION/TRANSITION)

LONGITUDINAL/VERTICAL:

LATERAL/DIRECTIONAL:

® AT 50 knots AND BELOW:
LONGITUDINAL/VERTICAL:

LATERAL/DIRECTIONAL:

RC — RATE COMMAND
AH - ATTITUDE HOLD
AC — ATTITUDE COMMAND

PITCH RC/AH

OPTIONS:
(1) MANUAL THROTTLE AND NACELLE TILT
(2) FLIGHTPATH AUGMENTATION:

h, Xx COMMAND/h, x HOLD

ROLL RC/AH
TURN COORDINATION

OPTIONS:
(1) STANDARD MODE:
PITCH AC/AH VIA STICK
(2) PRECISION MODE:
x COMMAND/x HOLD VIA STICK
x COMMAND/x HOLD/AH VIA TRC BUTTON

OPTIONS:
(1) MANUAL THROTTLE AND NACELLE TILT
(2) FLIGHT PATH AUGMENTATION:

h, x COMMAND/h, x HOLD

OPTIONS:
(1) STANDARD MODE:
ROLL AC/AH VIA STICK
(2) PRECISION MODE:
y COMMAND/y HOLD VIA STICK
y COMMAND/y HOLD/AH VIA TRC BUTTON

YAW RC/HEADING HOLD

h — ALTITUDE RATE

X — LONGITUDINAL ACCELERATION
X — LONGITUDINAL VELOCITY

y — LATERAL VELOCITY
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TABLE 6.- CLASSICAL CONTROL SYSTEM--PHASE III

LONGITUDINAL/VERTICAL:

RESPONSE TYPE

ATTITUDE, x COMMAND
/ATTITUDE, x HOLD
VIA STICK

x COMMAND /x,
ATTITUDE HOLD
VIA TOP HAT

x COMMAND/x,
ATTITUDE HOLD

LATERAL:

RESPONSE TYPE

MODE 1 AND 2
AC/AH VIA STICK

MODE 1P (X-SHAFTED)
AC/AH VIA STICK

y COMMAND/y, HOLD
VIA TOP HAT

MODE 2P (NON-X-SHAFTED)
AC/AH V1A STICK

y COMMAND/y HOLD
VIA TOP HAT

MODE 3 (X-SHAFTED)
AC/AH VIA STICK

MODE 4 (X-SHAFTED)
RC/AH VIA STICK

71

CONTROL EFFECTORS

HORIZONTAL VANE,
NACELLE TILT

NACELLE TILT,
HORIZONTAL VANE

NACELLE TILT,
HORIZONTAL VANE

CONTROL EFFECTORS

VERTICAL VANE
DIFFERENTIAL GUIDE
VANE (DIFFERENTIAL
THRUST)

DIFFERENTIAL GUIDE
VANE (DIFFERENTIAL
THRUST), VERTICAL VANE

VERTICAL VANE,
DIFFERENTIAL RPM
(DIFFERENTIAL THRUST)

DIFFERENTIAL RPM
(DIFFERENTIAL THRUST),
VERTICAL VANE

DIFFERENTIAL GUIDE
VANE (DIFFERENTIAL
THRUST)

DIFFERENTIAL GUIDE
VANE(DIFFERENTIAL
' THRUST)
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Figure 1.- Model 698 researc h aircraft.
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RESULTANT THRUST
HAS LESS THAN
1% THRUST LOSS

13%‘ < 30% OF TOTAL
AIRCRAFT THRUST FOR
/ CENTER CONTROL OR
OF MASS TRIM
\ 4 CONTROL
VANE
ENGINE )
L~ 6%
—~— THRUST DECREASE
AT MAXIMUM VANE
DEFLECTION

Figure 2.- Thrust vector diagram.
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Figure 3.- Vertical motion simulator.
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Figure 4.- Simulator cockpit. (a) Phase I. (b) Phases II and III.
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VERTICAL

VANE
. HORIZONTAL ‘°|°%
I} _~vaNe 85 .85
s — —10°
NACELLE :
ANGLE G/S AND /500 ft/min
12 — 120 knots LOCALIZER -~ § =10 — 1000 ft
~ - BOX - = g
10 - — —15° - -
ANGLE OF. — PITCH _ =4
ATTACK ¢ _ ~ =
~ < S_ o - . < 250
6 - | ATTITUDE ~_ -2
- - M REF ~
. HORIZON.  ~ -1
- _ - g
AN 2 - -5 N AN
- - - RADAR
/ 0 - L—- -— - - ALTITUDE
AIRSPEED - - -1
2 - -
- -10 -0~
A
v RA
2.5 L—~- -~
DME, n. mi.. 3 3 N 1 2 3 HEADING
1 1 L 'A 1 1 1
// / ] 6 \ '\ '\ \ROLLANGLE
(a) Phase I.

Figure 5.- Design 698 V/STOL HUD format.
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VERTICAL

VANE
NACELLE DEFLECTION
ANGLE, deg / HORIZONTAL RPM, %
: _~ VANE 90 90
... gp7=. DEFLECTION @
: _ — 110
5 = 10— RADAR
- - ALTITUDE,
— — = 100 ft
PITCH =
ATTITUDE -
> - < 100
AIRSPEED ATTITUDE -
AND VECTOR —/ I REF - -
HORIZON -1
X 10 knots — 4 =5
2 -5 -
& - s -
VERTICAL
CLOSURE VELOCITY, ft/sec — -10 -0~
RATE, knots Vv RA
Nc30  0s
RANGE, n. mi. 3 3% N 1 2 3 HEADING
L 1 1 1 [ 1 L 1 1 1 1
™A
/ / / / o \ \  \ \ ROLLANGLE

(c) Phases II and III--above 40 knots.

Figure 5.- Concluded.
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Figure 10.- Ground-effect trim requirements.
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LANDING DISTRIBUTION

- 80
A
o XDA, ft
¢ + 60
o A
® 0
s o T 40
a A
A
+ 20
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1 9 9 L [ i )
¥ 1 1 D 1
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YDA, ft
o)
4 -20
OPEN — MANUAL THROTTLE
CLOSED — FLT. PATH AUG.
o 1
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A 3,
0 3g
o 3¢
1 -60

Figure 11.- Landing distribution on an LPH--phase I.
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100
90 | SLOPE SET BY
GS/in. FOR HOVER

80 |-
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° 70 F ¢ = 15 KEAS
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2 60|
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« o 3 5
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20 } o 0 5
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Figure 12.- Engine thrust-response characteristics--inbound transition profile.
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Figure 13.- Throttle lever vs. power lever--aircraft trim points.
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INITIAL CONVERSION — DECELERATION TO 110 knots

B |

- ENVIRONMENT: 10 knots WOD AT 0°,

| LIGHT/MODERATE TURBULENCE

= [o]

-~ (o]

= 00 00
o o] [0}
- [0}

- o]
INTERCEPT + TRACK GS — DECELERATION TO HOVER/LOW SPEED
- [0}

L [o) o]
k- 000 o]
B 000
STATION KEEPING

- (o]

- 00 00
= 00

o 80

MANUAL THROTTLE

FLIGHTPATH AUGMENTOR

DATA REPRESENTS INDIVIDUAL PILOT RATINGS

Figure 14.- Individual pilot ratings for inbound transition to an LPH:
flightpath augmentor--phase II.
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LATERAL TRANSLATION TO PORT

10
ENVIRONMENT: 10 knots WOD AT 0°,
8 LIGHT/MODERATE TURBULENCE
6
S F )
T 4t o o
- o]
2Fr 00 00
! .
0
ACCELERATE TO NACELLE LOCK (~160 knots)
101
8 -
o 00
6 e
s t o o
T a4t o o
= o
2r 0o
0
ACCELERATE FROM NACELLE LOCK TO CLEAN FLIGHT
10r
8 -
- o} ©
- 6r (0] (0]
o -
T 4L
— (o] (o]
2F (o} (0]

MANUAL THROTTLE FLIGHTPATH AUGMENTOR
DATA REPRESENTS INDIVIDUAL PILOT RATINGS

Figure 15.- Individual pilot ratings for outbound transition from an LPH: manual vs
flightpath augmentor--phase II.
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LATERAL TRANSLATION TO HOVER

ENVIRONMENT:

O 15 knots WOD AT 0°, LIGHT/MODERATE

101 TURBULENCE
g | & 15 knots WOD AT 0°, MODERATE TURBULENCE
| O 25 knots WOD AT 0°, MODERATE TURBULENCE
6F S
S |8 § o 0 aAs OO A D
T 4kto & = 00 o Jleco a ®
00 2 o a
2} 8 2 ol 2 o
)
HOVER OVER TD SPOT
10+
8 A O A o A O
- o o o
G +toe a 8| o aa 2 o
T 4t o o oDo|l oo 2 oo| & 2 &
- A A
2F o ; ° o] a O
0
DESCEND AND LAND
0r0 A& o A 0O A 0
o o
8t °
- 2 B A 0
6F o0 00 aa m
[» o
e °f ° 8o 2 B
T 4} A a
- A O A O
2 ° ©
NONPRECISION PRECISION PRECISION +
X SHAFT

FLIGHTPATH AUGMENTOR ALWAYS ENGAGED
DATA REPRESENTS INDIVIDUAL PILOT RATINGS

Figure 16.- Individual pilot ratings for inbound transition to an LPH:
non-precision vs precision vs precision and cross-shafting--phase II.

92




LATERAL TRANSLATION TO HOVER

ENVIRONMENT:
O '15 knots WOD AT 0°, LIGHT/MODERATE

101 TURBULENCE
8 [ & 15 knots WOD AT 0°, MODERATE TURBULENCE
| O 25knots WOD AT 0°, MODERATE TURBULENCE
x 6F
c p—
A o]
T sbo a0 N
2 -
0
HOVER OVER TD SPOT
10
8 -
< °r a @O a O
5 0 o o PN D]
4t
2 -
0
DESCEND AND LAND
10
8 -
o & a
(s el 6 0 o a
c -
I al
’_
2 =
}—
0
NONPRECISION PRECISION PRECISION +
X SHAFT

FLIGHTPATH AUGMENTOR ALWAYS ENGAGED
DATA REPRESENTS AVERAGED PILOT RATINGS

Figure 17.- Averaged pilot ratings for inbound transition to an LPH: non-precision
vs precision vs precision and cross-shafting--phase II.
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TRANSLATION TO HOVER OVER TD SPOT

ENVIRONMENT:

O SEASTATE 3, 25 knots WOD AT -60°, WITH

or AIRWAKE TURBULENCE ON
gl & SEASTATE 5,35 knots WOD AT -60°, WITH
5 AIRWAKE TURBULENCE ON
c I
(@] -
T al o aA o a o A
T o000 aA 000 AAA 000 AAA
2 o A o A (o) a
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8l a o)
)
6F o AA °© a
S + o g a® 00 AA
I 4 -
2+
-
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X SHAFT

FLIGHTPATH AUGMENTOR ALWAYS ENGAGED
DATA REPRESENTS INDIVIDUAL PILOT RATINGS

Figure 18.- Individual pilot ratings for inbound transition to a DD-963:
non-precision vs precision vs precision and cross-shafting--phase II.
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TRANSLATION TO HOVER OVER TD SPOT

ENVIRONMENT:
O SEA STATE 3, 25 knots WOD AT -60°, WITH

10 AIRWAKE TURBULENCE ON
gl A SEASTATE5, 35 knots WOD AT -60°, WITH
R AIRWAKE TURBULENCE ON
e 6
o e
I 4}
Al o a o a
0
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e
6 ad
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-
2 -
0
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® o Q
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2 -
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X SHAFT

FLIGHTPATH AUGMENTOR ALWAYS ENGAGED

FLAGGED SYMBOLS INDICATE REDUCED LOW
FREQUENCY TURBULENCE AND GROUND EFFECTS

DATA REPRESENTS AVERAGED PILOT RATINGS

Figure 19.- Average pilot ratings for inbound transition to a DD-963: non-precision
vs precision vs precision and cross-shafting--phase I1.
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(a) Standard mode.

Figure 20.- Landing distribution on an LPH--phase II.
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(b) Precision mode with noncross-shafted engines.

Figure 20.- Continued.
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(c) Precision mode with cross-shafted engines.

Figure 20.- Concluded.
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ENVIRONMENT:
o 15 knots WIND, LIGHT/MODERATE TURBULENCE

10 A 25knots WIND, LIGHT/MODERATE TURBULENCE
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« 6F © o aa
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+ MANUAL + FLIGHTPATH FLIGHTPATH
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MANEUVERING OCCURS OUT-OF-GROUND
EFFECT

DATA REPRESENTS INDIVIDUAL PILOT
RATINGS

Figure 22.- Spot turns above a VTOL pad: individual pilot ratings--phase II.
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Figure 23.- General control mode comparison: pilot ratings--phase III.
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Figure 24.- LPH TD Dispersions.
(b) Control mode 1P*, SS 3.
(d) Control mode 2P*, SS 3.
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(a) Control mode 1, Sea State (SS) 3.
(¢) Control mode 2, SS 3.
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Figure 25.- Day vs night. Rate command vs attitude command:
pilot ratings--phase III.
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Figure 26.- LPH TD Dispersions.
(b) Control system 3*, SS 3.
(d) Control system 4*, SS 3,
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Figure 27.- SS 3 vs SS 5. Rate command vs attitude command:
pilot ratings--phase III.
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Figure 28.- DD-963 TD Dispersions.

(b) Control system 1P*, SS 5.
(d) Control system 3%, SS 5.
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Figure 29.- Spot turns: surge control--phase III.

X-SHAFTED
l———)
()
RECOVERABLE 0:]0J0.00 0.0} 8 00J0)}
0300
NONRECOVERABLE 00'");: D@D O O 0]

1 ] ] 1 1 1 L L 1 ]
0 20 40 60 80 100 120 140 160 180 200
AIRSPEED AT FAILURE, knots

Figure 30.- Minimum recovery speed: cross-shafted engines--phase III.
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Figure 31.- Minimum recovery speed: noncross-shafted engines--phase III.
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Figure 32.- Altitude loss following an engine failure:
cross-shafted engines--phase III.
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Figure 33.- Altitude loss following an engine failure:
noncross-shafted engines--phase III.
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Figure 34.- Simulated ejections vs MK 10 ejection seat envelope:
cross-shafted engines--phase III.
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Figure 35.- Simulated ejections vs MK 10 ejection seat envelope:
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